Mejores 15 webs para aprender matemáticas

Por lo general, la mayoría de alumnos quieren tener un buen espacio para aclarar sus dudas sobre temas relacionados con la matemática. Sin embargo, no siempre saben dónde buscar. Pensando en ello, en el siguiente artículo, hicimos recopilamos las mejores páginas webs para aprender matemáticas.

Micalculadoracientifca.com

Los conceptos básicos de las matemáticas son un problema para muchas personas. Por ello, existen sitios webs como Micalculadoracientifica.com, dónde nos esforzamos por crear contenido de calidad, simplificado y concreto, con toda la información sobre los temas matemáticos más importantes.

Además de contar con definiciones relevantes, brindamos ejemplos claros sobre temas como el álgebra, la aritmética y la geometría. Asimismo, contamos con calculadoras en línea muy interesantes. No solo se trata de una página recomendada para estudiantes. Adicionalmente, es una gran opción para que los profesores extraigan contenido para sus clases en el aula.

Ekuatio

Ekuatio es quizás una de las páginas web para aprender matemáticas más completas que existen en la actualidad. El contenido que ofrece esta plataforma es diverso y sobre todo amplio. Gracias a esto, sus usuarios pueden adecuar la información a su nivel de aprendizaje. Hay contenido desde primaria hasta universitario.

En este espacio web hay vídeos matemáticos, ejercicios y secciones de preguntas para reforzar el aprendizaje. A decir verdad, esta web tiene un diseño exclusivo para estudiantes, por ende, es sencilla y simple. No obstante, es un buen recurso para obtener información y aplicarla en clases.

Sangakoo

La herramienta online llamada Sangakoo es bastante fuera de lo común. No se parece a otras plataformas online para aprender matemáticas. Básicamente, es un sitio web que ofrece ejercicios de matemáticas para secundaria y hasta para carreras técnicas en sus primeros años.

La particularidad de esta página es que se maneja bajo un sistema de trabajo colaborativo. Por ello, termina siendo una gran red social dedicada a las matemáticas. El proceso de interacción se basa en la creación y resolución de problemas matemáticos que se comparten con otros participantes del sitio web.

Sector matemáticas

Esta plataforma es realmente atractiva. Una de sus cualidades más importantes es la sencillez de su estructura. Esto permite que la experiencia de uso sea cómoda. Sin embargo, es muy completa. Sector matemáticas es una gran página web para quienes necesitan aprender matemáticas sin perder la cabeza en el proceso.

Si bien es cierto que al comienzo puede parecer una página de aspecto infantil, la realidad es que tiene suficiente información de calidad. Además, dispone de vídeos tutoriales, ejercicios matemáticos y mucho más. Es posible aprender muchísimo en esta plataforma online. Los niveles van desde primaria hasta educación superior.

Lasmatematicas

Lasmatematicas merecen un lugar en este conteo de las mejores páginas web para aprender matemáticas. En general, es una buena opción para estudiantes jóvenes y niños. Brinda información desde la etapa primaria hasta niveles superiores. Su característica más relevante es la posibilidad de realizar ejercicios matemáticos en el mismo sitio.

Además, cuenta con cursos, exámenes y artículos relacionados con temas de matemáticas. Todo su contenido es de acceso gratuito y es muy completo. Entonces, resulta simple sacar el máximo provecho para aprender tanto teoría como práctica. Es un buen recurso para adecuarse al mundo de las matemáticas.

Smartick

Smartick funciona bajo una modalidad de enseñanza que se relaciona con diversos ámbitos. En el caso de las matemáticas, ofrece un método basado en el juego para niños desde los 4 años hasta los 14 años. Brinda secciones de estudio diarias por 15 minutos para que el estudiante comprenda el contenido de la mejor forma posible.

En esta página web hay diversidad de ejercicios orientados y tutoriales para aprender matemáticas desde una perspectiva atractiva. Quizás su única desventaja es que no es totalmente gratis. Ahora bien, si permite tener acceso gratis por 7 días para probar el servicio de enseñanza.

Superprof

Superprof es una página web que destaca por tener variedad de cursos, ejercicios matemáticos y demás contenido interactivo para aprender de forma simple. Además, los ejercicios tienen la solución disponible en el caso de que el estudiante necesite saber cómo se efectúa. En realidad, el contenido es bastante variado y se adecúa a las necesidades de cada etapa.

Además de lo anterior, esta plataforma permite conectar en línea con profesores especializados en matemáticas y otras materias de estudio para recibir asistencia. En general, es muy fácil de usar y tiene distintos métodos de aprendizaje disponibles.

Tiching

Tiching es una página web completa que permite aprender matemáticas de forma simple e interactiva. Se encuentra disponible para diversos países. El contenido en línea se adecúa a distintas etapas de aprendizaje. Es decir, es posible encontrar información para educación infantil, primaria y bachillerato.

Además, es muy útil para que los profesores simplifiquen sus tareas diarias relacionadas con la enseñanza en el aula. Asimismo, es una gran herramienta para los padres que deseen acompañar todo el proceso de aprendizaje de sus hijos desde muy pequeños. En líneas generales, es un buen sitio web para aprender matemáticas en cualquier momento.

Educatina

Educatina es un sitio web creado para el aprendizaje de matemáticas tanto para etapa secundaria como universitaria. El contenido de la página ofrece videos explicativos para mejorar la comprensión matemática a través de ejemplos. Además, es de acceso gratuito, lo cual es bastante ventajoso.

Por otro lado, es importante mencionar que la información suministrada en el sitio web está guiada por expertos en el tema. De hecho, es bastante útil para padres que desean orientar a sus hijos en el aprendizaje de ejercicios matemáticos. En líneas generales, se trata de una plataforma poco compleja y funcional.

Purplemath

En el caso de Purplemath, es importante mencionar que se enfoca en álgebra propiamente. Entonces, es ideal para los estudiantes que tienen problemas en este tema. Se encuentra adaptado a cualquier nivel de enseñanza debido a su gran practicidad. En tal sentido, es sencillo comprender la información que ofrece.

En la página web hay una serie de secciones con ejercicios matemáticos, apuntes e información algebraica de interés. No obstante, hay un punto a destacar y es que se encuentra en inglés. Sin embargo, esto no impide que se trate de una de las mejores páginas web para aprender matemáticas.

Tocamates

Tocamates es una plataforma ampliamente reconocida por la gran variedad de posibilidades que ofrece para aprender matemáticas. De hecho, en 2012 obtuvo un premio como mejor blog de educación. Está diseñado para la educación desde la etapa básica.

El proceso de aprendizaje es simple. Por ello, no hay motivos para tener miedo a las matemáticas cuando hay suficiente información disponible en este sitio web en línea. Además de información sobre matemáticas, hay opciones interactivas para mejorar los conocimientos en esta materia de estudio cada vez más.

Ematematicas.net

Ematematicas.net destaca por ser una de las páginas web para aprender matemáticas más completas. Debido a esto, es perfecta tanto para estudiantes como para profesores. La herramienta es muy útil, ya que dispone de muchos ejercicios en línea. La ventaja es que cada etapa de aprendizaje tiene ejercicios propios asignados.

Otra particularidad es que, no solo tiene ejercicios prácticos, sino que posee juegos como Sudoku, cálculos mentales, tangram y mucho más. Sin duda, es una buena opción cuando se trata de aprender de forma simple y divertida al mismo tiempo. Asimismo, tiene cursos que se pueden llevar a cabo en cualquier momento.

Mundoprimaria

Mundoprimaria es una plataforma en línea que se encuentra diseñada para estudiantes de primaria y secundaria que necesitan aprender matemáticas. El proceso de enseñanza es totalmente diferente al tradicional. Es decir, permite a los alumnos adquirir conocimientos matemáticos de forma interactiva y entretenida.

La estructura en general de este sitio web, tiene una apariencia atractiva que resulta amigable para los niños. Sin embargo, una vez que se avanza dentro del sitio web, es posible observar información completa y extensa sobre diversos temas relacionados con las matemáticas.

PlusMaths

En PlusMaths no solo hay variedad de ejercicios prácticos para resolver, sino muchísima información teórica sobre las matemáticas. Las operaciones van desde niveles básicos hasta avanzados. Además, cuenta con distintos tipos de calculadoras matemáticas para resolver diversos problemas.

Los ejercicios son variados. Es decir, puedes encontrar actividades de fracciones, aritmética, geometría, probabilidad, ecuaciones, álgebra y estadística. En general, es un buen recurso para aprender matemáticas de forma completa y simple. La web no es para nada compleja, al contrario, es bastante intuitiva, de forma que los usuarios se pueden adaptar con facilidad.

La Escuela en Casa

La Escuela en Casa tiene distintas herramientas para aprender matemáticas adecuadamente. En primer lugar, hay variedad de artículos con información extensa sobre temas como números enteros, geometría y mucho más. Por otro lado, es posible ingresar a clases en línea para tomar lecciones de matemáticas.

Además, se pueden descargar los ejercicios de matemáticas en formato PDF. En líneas generales, esta página web es bastante funcional y útil para aprender matemáticas y muchas otras materias de estudio. Tiene una estructura simple para que todos los usuarios puedan navegar sin problema dentro de la plataforma.

Las 15 mejores películas de matemáticas

En toda la historia del cine, hay grandes películas relacionadas con la matemática que nos hacen enamorarnos cada vez más de ella. La realidad es que son demasiadas como para nombrarlas todas. Por ello, en el siguiente artículo te contamos las 15 mejores películas de matemáticas que debes ver.

Antes de empezar, comentarte que puedes ver todas las películas de este artículo en Amazon Prime. Para poder usar esta plataforma, solamente debes crearte una cuenta de Amazon Prime.

Una mente maravillosa – 2001

Esta película es la historia de vida del conocido matemático John Forbes Nash Jr, quien fue galardonado con el Premio Nobel de Economía en 1994. La película presenta maravillosamente la vida de este genio.

De cerca, la película muestra su tiempo en la Universidad de Princeton, sus enfermedades y su tiempo con amigos y familiares. Como todas las demás grandes mentes, Nash también se ve sujeto a miserias y sufrimientos.

La película está basada en el libro autobiográfico sobre la vida del matemático John Nash llamado A Beautiful Mind escrito por Sylvia Nasar. La película cuenta con muchas estrellas populares como Paul Bettany y Jennifer Connelly.

Esta película visualmente impresionante fue dirigida por Ron Howard y, lo que es más importante, la cinematografía es de Roger Deakins, conocido por sus películas visualmente hermosas.

La teoría del todo – 2014

Stephen Hawking ha sido objeto de docenas de biografías, documentales y películas. Esta película de 2014 es un poco diferente, cubre los primeros años de vida de Hawking, donde resuelve algunos problemas matemáticos difíciles. También cubre el lado romántico de Hawking y su tiempo con su esposa e hijos.

Esta misma película está basada en las memorias tituladas Viajando al infinito: Mi vida con Stephen de Jane Hawking (su esposa). La película fue dirigida por James Marsh y fue nominada a los Premios de la Academia en muchas categorías.

Criando Genios – 2004

Las matemáticas tienen algo para todos. Si te encantan las matemáticas y la comedia, Criando Genios puede complacerte. Esta película sigue a un genio de las matemáticas que se encierra en el baño para resolver una ecuación matemática.

Esta película también se tituló, Baño Boy. Fue escrita y dirigida por Linda Voorhees y Bess Wiley. El interesante trabajo cinematográfico se estrenó en varios festivales de cine y tiene seguidores de culto entre los nerds de las matemáticas. Sin duda, es una buena película que merece la pena. Más aún cuando se trata de números.

Cartilla – 2004

Vale absolutamente la pena. Cartilla o Primer es una película multidisciplinar independiente sobre viajes en el tiempo. Esta película es una colaboración de un matemático (Shane Carruth) y un ingeniero (David Sullivan) que actuaron, escribieron y dirigieron la película con la ayuda de otros actores y personajes.

 Los cineastas han hecho que esta película sea confusa deliberadamente y han hecho sufrir a la audiencia. Esta es una de las películas independientes más queridas de 2004, se estrenó en varios festivales de cine y obtuvo seguidores de culto y críticas positivas.

Pi (fe en el caos) – 1998

Un thriller psicológico, el matemático de Sean Gullette busca patrones en todo lo que lo rodea. De hecho, este es el enfoque principal en que se basa esta película. El motivo es que su personaje principal cree que todos, desde los inversionistas de Wall Street hasta los judíos jasídicos, están tratando de atraparlo.

Aunque de bajo presupuesto, Pi ganó el premio al director en Sundance en 1998. Se trata de una muy buena opción para quienes son amantes de las matemáticas y del buen cine. En esta lista de las 15 mejores, no puede faltar.

El juego de la imitación – 2014

Esta película está basada en la vida del brillante matemático y criptoanalista británico Alan Turing. La película gira en torno a Turing, quien dirigió un equipo de descifrado de códigos para ayudar a los aliados durante la Segunda Guerra Mundial y ayudó con éxito a acortar la guerra y salvar millones de vidas.

La película es una historia inspiradora llena de números, matemáticas complejas y muchos acertijos mientras Turing intenta descifrar el código enigma, un dispositivo de cifrado utilizado por el ejército alemán con la ayuda de otros matemáticos.

Interestelar – 2014

Una película de ciencia ficción de 2014 dirigida por Christopher Nolan, que usa conceptos matemáticos y físicos de tiempo, gravedad y relatividad para llevar al público a través de su compleja narrativa.

La película sigue a un equipo de exploradores que intentan asegurar la supervivencia de la humanidad viajando a través de un agujero de gusano en el espacio.

En la película, la salvación final de la humanidad depende de una ecuación matemática, que se supone que resuelve el “problema de la gravedad” que esencialmente impide el escape de cualquier número significativo de seres humanos de la atmósfera terrestre.

Párate y entrega – 1988

Esta película está basada en las experiencias de la vida real del profesor de matemáticas Jaime Escalante y sus alumnos. Los niños estaban reprobando matemáticas, pero con trabajo arduo y un maestro que creyó en ellos, superaron todos los obstáculos y ejemplificaron el concepto de mentalidad de crecimiento.

Stand and Deliver es una historia real increíblemente inspiradora que es tan conmovedora que tanto los maestros como los estudiantes deberían verla. Si es necesario inspirar a los estudiantes y profesores en temas de matemáticas, es necesario mirar esta película con detenimiento. Sin duda, deja una gran lección de vida.

El cálculo del amor

Este cortometraje de 15 minutos, escrito y dirigido por Dan Clifton, está protagonizado por Keith Allen como el matemático AG Bowers. La historia se trata de la investigación del enigma de la conjetura de Goldbach de 250 años. En la película, el matemático dedica toda su vida a resolver el problema luego de que AG Bowers comienza a recibir cartas anónimas que revelan la respuesta.

La película, a pesar de ser breve, es una de las más impresionantes en matemáticas porque no solo presenta a los espectadores un tema matemático fascinante, sino que también revela el impulso interno de Bowers para ganar honor al concluir el problema.

21 BlackJack – 2008

La película de 2008 llamada 21 se centra en Ben Campbell, un estudiante del MIT y prodigio matemático que aspira a asistir a la Escuela de Medicina de Harvard. Con la ayuda de su profesor, desarrolla una estrategia para ganar en el Blackjack que consiste en contar cartas y aplicar la probabilidad fundamental para ganar de forma constante.

Esta película enfatiza el desarrollo personal del protagonista mientras muestra las bellezas de las matemáticas a través de aplicaciones a situaciones del mundo real. Esta película de matemáticas es una visita obligada para cualquier persona a la que le gusten las apuestas y las probabilidades.

La fórmula preferida del profesor – 2006

Esta película tiene todo un mundo matemático por ofrecer. Trae a lugar el número Pi, números primos y mucho más. Cuenta la historia de una madre soltera que comienza su nuevo trabajo en la casa de un profesor de matemáticas. El profesor tiene un grave accidente que le hace tener pérdida de memoria constante.

A raíz de esto, nace una amistad llena de cálculos matemáticos entre el profesor y el hijo de su empleada.

Figuras ocultas – 2016

Esta película presenta a tres mujeres negras matemáticas que trabajan para la NASA durante la era de la carrera espacial. La película está protagonizada por Taraji Henson como Katherine Johnson, Octavia Spencer como Dorothy Vaughan y Janelle Monae como Mary Jackson.

Los personajes están basados ​​en personas y situaciones reales, aunque la película se toma algunas libertades con precisión histórica. En general, es una película que rompe barreras y disipa las nociones estereotipadas de quién puede y quién no puede ser matemático.

Cubo – 1997

Cube o Cubo tiene geometría, números primos e incluso potencias de números primos. En esta película canadiense, Nicole de Boer interpreta al personaje matemático Leaven. Ella usa habilidades matemáticas para navegar por los horrores de las distintas habitaciones del cubo.

La película también tiene un personaje sabio autista, Kazan, interpretado por Andrew Miller. Por un lado, la película rompe barreras al contar con una mujer matemática. Por otro lado, también tiene un carácter sabio estereotipado. Curiosamente, la película contó con un matemático como consultor para ayudar con la precisión matemática, David Pravica de la Universidad de Carolina del Este.

Bola de dinero – 2011

Si eres matemático aplicado o estadístico, esta película será un placer para ti. La película gira en torno a Billy Beane (Brad Pitt), el gerente de un equipo de béisbol en Oakland. En la película, utiliza análisis generados por computadora, sabermetría y otras técnicas estadísticas y de exploración para encontrar y fichar jugadores.

Esta película es un gran ejemplo para los estudiantes que siempre se preguntan dónde aplicar las matemáticas y la estadística en la vida real. Esta película no es ficción. Está basada en un hecho real que sucedió hace 20 años.

Caza de buena voluntad – 1997

La historia de Good Will Hunting gira en torno al personaje principal Will Hunting (Matt Damon), que trabaja como conserje en el MIT. Sin embargo, tenía un intelecto matemático natural y absolutamente genial. Una noche, estaba trabajando en un problema matemático muy complejo cuando el profesor Lambeau notó sus habilidades.

El profesor hizo que Hunting se diera cuenta de que es extraordinario y siguió motivándolo. Además de matemáticas, esta película también cubre temas como el abuso infantil y la psicología.

¿Quién fue Paolo Ruffini?

La matemática es un mundo amplio que se ha forjado durante muchos años. A lo largo de la historia, grandes personajes han trabajado en investigaciones para constituir todo lo que hoy conocemos. Si bien es cierto que la matemática actual ha evolucionado mucho, es importante destacar la relevancia de figuras que marcaron un antes y un después en esta disciplina.

Por ello, es necesario mencionar a Paolo Ruffini. Este hombre fue uno de los aportadores más interesantes de las matemáticas. Sin embargo, no solo fue matemático. Además de lo anterior, sobresalió como médico y filósofo.

Este hombre, como bien mencionamos antes, destaca por la cantidad de aportes que brindó en el ámbito de la matemática. Incluso, la famosa regla de Ruffini existe gracias a él, quien la inventó y con ella revolucionó la forma en que se interpretaba la matemática para entonces.

Es imposible hablar de matemáticas sin mencionar a Paolo Ruffini. Por este motivo, a continuación, te compartimos su biografía. Asimismo, todas las contribuciones de su parte asociadas con el campo matemático. Además, describimos el paso a paso de su desarrollo como catedrático y sus investigaciones más resaltantes.

Biografía de Paolo Ruffini

Paolo Ruffini nace en Valentano, Italia, el 22 de septiembre de 1765. Su padre, Basilio Ruffini fue un importante médico. Su madre se llamaba María Francesca Ippoliti. Para el momento en que nace Ruffini, la ciudad de Valentano formaba parte de los Estados Pontificios.

Luego de que naciera, toda su familia camba de residencia. Desde entonces, Paolo Ruffini vive en la zona norte de Italia, exactamente en Reggio. De hecho, casi toda su vida la desarrolla en dicho lugar.

Estudios universitarios

Un dato relevante de la infancia de Ruffini es que inicialmente fue educado para que fuese religioso. Sin embargo, esto nunca se concreta. Para el año 1783, a la edad de 18 años, ingresa en la universidad de Módena. En este momento, empieza su vida como estudiante, pero no todavía como matemático.

Es decir, Paolo en primera instancia estudia filosofía, medicina y cirugía. De las tres especialidades logra licenciarse de forma sorprendente en 1788. Unos años después, consigue el título como matemático.

Oportunidades laborales

Siendo aún estudiante universitario, Paolo Ruffini ejerce como docente en el período de 1787-1788. Para ese entonces, está a cargo de la cátedra llamada fundamentos de análisis. El motivo de esta eventualidad se debe a que el anterior profesor abandona su cargo al ser electo como concejal.

Años más tarde, Ruffini se acredita como profesor en Elementos de Matemáticas. Esto sucede exactamente en el año 1791. Incluso, cuando toma la asignatura, tiene la tarea de sustituir a su antiguo profesor de geometría. No obstante, en ese mismo año, Ruffini empieza a sorprender.

 No solo destaca como profesor de matemáticas. En paralelo, Paolo empieza a ejercer como médico. Asimismo, inicia su período como profesor en la clínica perteneciente a la universidad de Módena.

Lo más dramático de su historia es que en la época en la que surgen todos estos eventos, el mundo se enfrenta a procesos de guerra. Para entonces, Francia avanza con rapidez después de la Revolución Francesa. Este contexto, marca un antes y después en la vida de Paolo Ruffini.

Pierde su puesto como profesor

En 1796, Napoleón Bonaparte (líder de la revolución), invade Módena. Desde ese momento, se instaura la República Cisalpina. Paolo tuvo la oportunidad de ocupar el puesto dentro del consejo de Bonaparte, pero el primero de ellos rechaza la oferta. Por esta razón, Ruffini pierde su trabajo como profesor.

Sin embargo, además de esto, Paolo pierde la licencia para impartir clases en cualquier lugar mientras Napoleón continúa en posesión de Módena.

Teoría de las ecuaciones

A pesar de este desafortunado momento, Ruffini decide seguir adelante. Aprovecha la oportunidad para dedicarse al campo médico. En paralelo, ocupa su tiempo en el desarrollo de estudios sobre la resolución de ecuaciones de quinto grado por radicales. Este tipo de operación algebraica es una de las más complejas de resolver.

Desde hace muchos años las ecuaciones de segundo grado dejaron de ser un misterio. Lo mismo sucede con las ecuaciones de tercer grado y la ecuación cuártica. Sin embargo, desde hace más de 250 años, nadie había logrado descifrar la respuesta ante ecuaciones de quinto grado.

Grandes matemáticos de la historia como Vandermonde y Euler estudiaron el tema en profundidad sin éxito alguno. No obstante, todo se inclinaba porque la ecuación de quinto grado se solucionaba de algún modo con el uso de radicales.

Todo el misterio relacionado con la ecuación quíntica fue resuelto por el libro Teoría de las ecuaciones de Paolo Ruffini. El texto fue publicado en 1799, cuando el matemático regresó a la universidad de Módena como profesor. La particularidad de este libro expone lo siguiente:

No hay ningún tipo de fórmula que permita resolver una ecuación de quinto grado o superior a esta.

Si bien es cierto que su planteamiento es correcto, el libro tenía ciertas inconsistencias. Dichos errores fueron sopesados por el experto en matemática Niels Henrik Abel, en 1824. El resultado de ambas investigaciones es lo que se conoce como el teorema de Abel-Ruffini.

El método Horner

A pesar de su importante aporte con la investigación sobre ecuaciones de quinto grado, Ruffini es ignorado por la comunidad matemática. No obstante, sigue con su trabajo y para 1802 publica Riflessioni intorno alla rettificazione ed alla quadratura del circolo. En dicho texto, Paolo destaca un procedimiento para acercar las raíces de una ecuación.

Sin embargo, el método se atribuye a Horner dado que fue este personaje quien lo da a conocer más adelante. En el mismo año, Ruffini trabaja en su texto memoria Della soluzione delle equazioni algebraiche determinata partocolari di grado sup. al 4º.

Luego, dos años más tarde, publica una edición de Sopra la determinazione delle radici nelle equazioni numeriche di qualunque grado.

Algebra elementare y la Regla de Ruffini

En el año 1807, Ruffini publica uno de sus escritos de mayor relevancia llamado Algebra elementare. Sin embargo, su aporte más valioso a la historia de la matemática llega justo en 1809. En este año, descubre lo que se conoce como la regla de Ruffini.

Este proceso matemático desarrollado por Ruffini se basa en la división polinómica entre polinomios de la forma x-r rápidamente. Si bien su utilización principal se enfoca en la división de polinomios, también se aplica para obtener la raíz cuadra de los mismos. Por otro lado, es clave para resolver ecuaciones de tercer grado o mayores.

Rector de la universidad de Módena.

Después de muchas investigaciones y años de trabajo, Ruffini es nombrado rector de la universidad de Módena en 1814. Para entonces, fue catedrático tanto en medicina como en matemáticas. Dos años después, ocupa el puesto de presidente de la sociedad italiana Dei Quaranta. Por si esto fuera poco, también es nombrado presidente del Instituto Italiano de Ciencias.

Problemas de salud y muerte

La realidad es que la vida de Ruffini como profesional está llena de logros. No hay duda de la cantidad de trabajo desarrollado por su parte. Sin embargo, pese al reconocimiento, su estado de salud se empieza a complicar en 1817. En este año, sufre una enfermedad epidemial de la época.

Si bien consigue recuperarse medianamente, en 1819 sus complicaciones regresan. Esto último, lo lleva a dejar de lado la universidad. Sin embargo, siendo un hombre de oportunidades, toma la experiencia vivida para elaborar un escrito sobre la enfermedad. El artículo se titula Memoria sul tifo contagioso.

Seguidamente, en 1821 publica un último trabajo llamado Riflessioni critiche sopra il saggio filosofico intorno alle probabilità del Sig. Finalmente, el 9 de mayo de 1822 fallece en la ciudad de Módena.

Mayores aportes de Paolo Ruffini a las matemáticas

En resumen, los aportes más significativos de Ruffini en el ámbito de las matemáticas son los siguientes:

  1. Su aporte más importante es la regla de Ruffini. Dicha regla es fundamental en la efectuación de distintos tipos de operaciones. Como bien mencionamos antes, gracias a este aporte es posible dividir polinomios y encontrar su raíz cuadrada. Además de otras utilidades cruciales.
  2. Otro aporte que se debe destacar es la comprobación de la imposibilidad para resolver ecuaciones de quinto grado. A pesar de que en la actualidad no implica un hecho relevante, para la época era un gran problema en términos matemáticos.
  3. Procedimiento para aproximar las raíces cuadradas de las ecuaciones.
  4. Aportes para la consolidación del teorema Abel-Ruffini.
  5. Definición de teorías claves en las conversiones de una ecuación.

¿Qué es la máquina de Turing?

La conocida máquina de Turing se basa en una estructura matemática sólida y autónoma con cualidades para resolver operaciones matemáticas por medio de la utilización algorítmica. Pese a que esta definición resulta muy compleja, la realidad es que no es así.

En palabras simples, esta máquina se trata de un aparato fabricado en 1936 para computar datos informáticos de forma infinita. Sin duda alguna, su elaboración marca un evento clave en la historia de la computación. De hecho, se puede considerar que gracias a esta máquina existen en la actualidad los ordenadores que conocemos.

Dicho de una forma sencilla, la máquina de Turing no es complicada. Al contrario, uno de sus atributos más importantes es justamente su fácil desempeño. Simplemente, emplea representaciones simbólicas encima de una cinta que sigue distintos procesos. No obstante, que sea simple, no quiere decir que sea inútil. Es todo lo opuesto.

Una máquina de Turing se adecúa a todo tipo de códigos algorítmicos de ordenadores diversos. En tal sentido, simula la lógica de comportamientos de computadores sin ningún problema.

Esta máquina debe su nombre a su inventor Alan Turing de origen inglés. Este personaje destacó durante su vida en diferentes ámbitos. Principalmente, sobresalió como un genio en la lógica. De hecho, a propósito de lo anterior, la máquina inicialmente se llamaba “Máquina de Computación Lógica”.

La máquina de Turing representa uno de los aportes más relevantes en toda la historia de la informática.

Historia de la creación de la máquina de Turing

A términos del siglo XIX la matemática había ganado relevancia en muchos ámbitos. Sin embargo, todavía no lograba formalizarse. La mayoría de expertos en el tema, trabajaban muchísimo con el objetivo de establecer este campo de estudio.

Todo esto, se trataba de implantar una hipótesis sobre un grupo de símbolos y métodos cuya realización quedara a cargo de una máquina.

Alan Turing dio a conocer su iniciativa sobre la máquina de Turing en el año 1936. Esto ocurrió exactamente en la presentación de su investigación «On computable numbers, with an application to the Entscheidungsproblem». La publicación, del mismo año, analizaba el planteamiento de David Hilbert en relación con la decidibilidad de las matemáticas.

Dicho de otra forma, el planteamiento consistía en confirmar la existencia de un procedimiento fijo aplicable a cualquier respuesta matemática y que este, a su vez, confirme si dicho resultado es verídico o no. Con base en lo anterior, Alan Turing diseñó la máquina de Turing confirmando que algunas máquinas pueden resolver algoritmos diversos.

Hasta el momento, Turing dejó un legado importante. Si bien su trabajo no se centraba en la representación física, no se puede negar la relevancia que tiene en el diseño de ordenadores modernos. A todas estas, cuando observamos la conducta de una computadora, estamos ante una máquina de Turing.

¿Cómo está compuesta la máquina de Turing?

Una máquina de Turing tiene una cinta ilimitada separada en secciones de gestión que funcionan como dispositivo de almacenamiento. Además, dispone de un cabezal que lee y digita códigos en la cinta. Por otro lado, esta misma pieza es la encargada de desplazar la cinta de un espacio a otro.

Asimismo, incluye un registro de control de estado y una tabla reducida de procesos. Esta última se conoce también como tabla de acción. Como bien mencionamos antes, la máquina de Turing funciona de forma autómata. Por ello, para descifrar distintos tipos de algoritmos se rige por la jerarquía de Chomsky.

  • Cinta: esta cinta se encuentra separada en secciones y cada una se posiciona consiguientemente a la otra. Todas las celdas disponen de símbolos de una cartilla limitada. La cartilla, a su vez, posee un símbolo particular llamado “B”. Adicionalmente, incluye otros símbolos extras. La cinta se extiende en ambos sentidos (derecha o izquierda) tanto como sea necesario para su labor.
  • Cabezal: esta parte de la máquina de Turing lee y genera códigos en la cinta. Además, se encarga de movilizar la cinta en el sentido que corresponda. Dependiendo del modelo de cabezal, es posible que se mueva. De ser así, la cinta es fija.
  • Registro de estado: como su nombre lo señala, debe guardar el estado del aparato. Esto se refiere a un estado limitado. Además, hay un estado inaugural particular con el cual el registro empieza a operar. Alan Turing expone que cada uno de los estados sustituye el “estado mental” cuando un individuo ejecuta una operación matemática determinada.
  • Tabla de instrucciones: básicamente, se hace cargo de todas las indicaciones de la máquina de Turing. Es decir, señala lo que el aparato tiene que ejecutar en un momento dado. Por ejemplo, mover el cabezal, escribir un símbolo o eliminarlo, entre otras.

¿Cómo funciona la máquina de Turing?

Una máquina de Turing desarrolla tres tareas esenciales una vez que el cabezal se dispone encima de la cinta. Este aparato lee el símbolo ubicado en una celda determinada, cambia el valor del símbolo que se ubica en una celda o desplaza la cinta hacia el lado derecho o izquierdo para descifrar y sustituir la celda contigua.

Asimismo, cada uno de los valores puede tener una labor vinculada. Es decir, si, por ejemplo, el símbolo leído corresponde al número 1, la máquina de Turing escribe 0 y desplaza la cinta al lado derecho. No obstante, si el símbolo leído es 0, la máquina escribe el número 1.

Esta tarea realizada por la máquina de Turing se denomina inversión. Esto pues, tienen participación valores binarios. De este modo, una máquina de Turing se programa para llevar a cabo tareas específicas, que descifren algoritmos de gran complejidad. La materia de enfoque de este dispositivo son los números que se calculan a través de operaciones matemáticas.

¿Cuáles son los usos de la máquina de Turing?

A decir verdad, la máquina de Turing tiene gran cantidad de usos durante toda su historia. Y, no es para menos, se trata de un invento revolucionario que cambió la forma de ver e interpretar la matemática. Anteriormente, fue usada como generadora de lenguajes, por ejemplo.

Sin embargo, hay muchas aplicaciones de las cuales es posible hablar en este punto. Algunas de las más importantes son las siguientes:

  • Teoría de la computación: esta teoría forma parte del estudio de la informática y la matemática. Su objetivo principal es el análisis de las cualidades y limitantes esenciales de los ordenadores. Particularmente, esta teoría pretende encontrar procedimientos matemáticos que admiten la posibilidad de calcular y clasificar una operación según su nivel de complejidad.
  • Máquina Oráculo: se trata de un tipo de máquina de Turing que tiene un oráculo que responde cuestionamientos relacionados con simbología numérica específica.

¿Cuáles son los tipos de máquina de Turing que existen?

Hay varios tipos de máquinas de Turing. Todos y cada uno de ellos, nacen con el objetivo de simplificar la realización de problemas algorítmicos. A continuación, se describen los cinco tipos:

  1. Máquina de Turing con Directiva de Permanecer: esta máquina tiene una cinta ilimitada que se mueve en sentido único. Por lo general, la cinta se mueve a la derecha. La movilidad a la izquierda está imposibilitada.
  2. Máquina de Turing en dos direcciones: si una máquina de Turing tiene una cinta ilimitada, puede funcionar como una máquina en dos sentidos, pero con dos pistas. En este caso, la información se ubica en función de la disposición de las cintas según corresponda.
  3. Máquina de Turing Multicinta: como su nombre lo indica, tiene varias cintas. Su particularidad es que cada una de ellas cuenta con un cabezal propio. Por ello, cada una de estas piezas funciona de forma autónoma. Por otro lado, no es necesario que se muevan en el mismo sentido ni en simultáneo.
  4. Máquina de Turing Multidimensional: en este caso, la cinta de la máquina cuenta con diversas dimensiones. Es decir, una cinta con dos dimensiones que se mueve hacia la derecha, izquierda, arriba y abajo. En función del estado de la máquina y el algoritmo a descifrar, el estado se modifica.
  5. Máquina de Turing No determinista: es posible simular una máquina determinista con una no determinista y viceversa. En el caso de la determinista, se basa en aquella que, para el símbolo de la cinta y el estado actual, consta de una cantidad de números limitados a escoger.

¿Qué beneficios tiene la máquina de Turing?

Uno de los beneficios más importantes de este tipo de máquina, en comparación con otras, es que su lenguaje es bastante amplio. Por otra parte, el algoritmo puede admitirse o denegarse sin tener que releer por completo. Las operaciones se computan de cualquier forma cuando se trata de una máquina de Turing. Además, su codificación es decidible.

Estas máquinas enlistan o enumeran el lenguaje. Por otro lado, la autonomía que tienen no se compara con ninguna otra. Esto último, permite que salte entre distintos estados. No hay necesidad de compendiar ecuaciones lógicas, pues la memoria es bastante amplia.

Las mejores camisetas matemáticas

Aquí puedes encontrar las mejores camisetas matemáticas. Para facilitarte la elección, las hemos clasificado en tres grupos diferentes: las más divertidas, las más creativas y por último, las más frikis. Así que empieza a mirar, y a ver si encuentras la que estás buscando.

Camisetas matemáticas divertidas

En primer lugar, te mostraremos las camisetas más divertidas. Puesto que siempre alegra un poco ver una camiseta con un chiste o una imagen graciosa. Así serás el alma de la fiesta, vayas donde vayas. Empecemos sin más dilación.

1. ¿Qué parte de … no has entendido?

Esta camiseta es un clásico, de hecho existen diferentes formatos de este mismo diseño. Es muy graciosa por la ironía que genera, puesto que las matemáticas son complejas y tal como aparecen en la camiseta no se entienden mucho. Esta es una gran elección si quieres que tu camiseta tenga fórmulas matemáticas, colores y un chiste matemático.

2. Camiseta de números complejos

Después, tenemos una opción más discreta, pero igual de graciosa. Lo cual se debe al chiste que hay escrito. La explicación del cual es que la raíz de menos uno se describe como la i, en el conjunto de los números complejos. Así que se hace un juego de palabras. En cuanto al diseño, es muy básico y a su vez elegante.

3. Camiseta de funciones

Esta tercera camiseta es una ilustración muy graciosa de los principales tipos de funciones, por medio de los brazos de un muñeco dibujado. Es de nuestras preferidas, pues además de ser graciosa y muy original, te puede venir bien en los exámenes.

4. Camiseta de derivadas

Esta camisa hace una clara referencia al significado de derivada. Podemos ver que partimos de la función f(x) = vaca, la derivada de esta función equivale a la leche que hace la vaca. Y finalmente, la segunda derivada es el queso. Es una alusión equivalente a la relación que mantiene una función con su respectiva derivada y segunda derivada.

Personalmente, nos parece muy graciosa. Y creemos que si apareces en tu clase de matemáticas con esta camiseta puesta, seguro que te dan el diez.

5. Camiseta «All you need is love»

Esta camiseta es muy original, pues utiliza funciones matemáticas para escribir la palabra «LOVE», la cual significa amor en inglés. Además, si lees esta palabra conjuntamente con la frase de arriba, obtienes la famosísima frase «All you need is love«.

Esta camiseta es altamente recomendable si quieres demostrar al mundo el amor que sientes por las matemáticas o, en realidad, por cualquier cosa. Es seguro que sacarás alguna que otra sonrisa.

6. Camiseta con la función de un corazón

Este sexto modelo es bastante similar al anterior. Básicamente, podemos ver una gráfica con una función dibujada en forma de corazón. Digamos que el mensaje que vas a transmitir es el mismo que cuando lleves la anterior camiseta: tu amor por el arte de las matemáticas y todas sus ramas.

7. Camiseta de una pizza matemática

Ahora, nos encontramos con un buen juego de palabras y además, un diseño increíblemente creativo.

El significado de esta camiseta es el siguiente: la fórmula para calcular el volumen de un cilindro es: V = π · r² · h, lo cual es equivalente a la siguiente expresión: V = π · r · r · h. Y si hacemos algún que otro cambio de variable y nomenclatura (nombramos «z» al radio y «a» a la altura), la expresión del volumen nos queda tal que así: V = pi · z · z · a.

8. Camiseta matemática motivacional

Por último, en este apartado de camisetas matemáticas graciosas, podemos ver una camiseta que utiliza el significado de valor absoluto (eliminar el signo de un número, para que quede siempre en positivo). Y asociamos el símbolo positivo con el positivismo en cuanto al positivismo, así que el mensaje transmitido es que evites la negatividad.

Camisetas matemáticas creativas

Ahora, pasamos al apartado de camisetas creativas, las cuales no incluyen chistes matemáticos como las anteriores. Pero usan las fórmulas y los números para crear diseños bonitos y atractivos.

9. Camiseta del número Pi

Esta camiseta muestra los primeros dígitos del número Pi, que es un número irracional (por lo tanto, tiene infinitas cifras decimales). Y en el centro está dibujado el símbolo que se emplea para representar este número: π.

Es un diseño sencillo, elegante y matemático. Además, la forma circular hace una especie de efecto visual bastante chulo.

10. Camiseta con la identidad de Euler

Esta camiseta representa la identidad de Euler, una fórmula matemática muy importante en el mundo de las matemáticas. Adicionalmente, en el fondo se puede ver muchas fórmulas matemáticas que generan un conjunto visual muy bonito.

11. Camiseta muy pintoresca y matemática

Esta décima camiseta hace una combinación entre el pensamiento lógico-matemático y la creatividad. Esto lo hace mostrando los dos hemisferios del cerebro y en cada parte, hay una representación del tipo de pensamiento que se trata en esa parte de la mente. Generando así una contrariedad muy artística.

12. Camiseta con muchas funciones matemáticas

Esta otra camiseta muestra bastantes fórmulas matemáticas y cálculos complejos. Y se puede apreciar que también hay fórmulas propias de la física, además de gráficos de funciones. Esto nos da un buen resultado visual y, bastante interesante en cuanto al apartado numérico. Te retamos a ver cuántas fórmulas de las que hay escritas reconoces.

Camisetas frikis matemáticas

Ahora ya hemos visto chistes matemáticos, camisetas con fórmulas matemáticas y ahora toca ver opciones algo más frikis. Ya verás que te encantarán todas, puesto que son muy originales.

13. Camiseta matemática versión Star Wars

En primera instancia, nos encontramos con una camiseta similar a la que hemos visto anteriormente del número Pi. Pero, esta es una versión de Star Wars. Puesto que hace alusión a la pantalla que sale al principio de las películas y además, se hace alusión al lado oscuro, lo cual se puede apreciar en la frase «Ven al lado matemático, tenemos al Pi».

14. Camiseta con un reloj matemático

Ahora te presentamos una camiseta que nos ha maravillado, pues es un reloj que muestra las horas, a partir de fórmulas matemáticas. Sencillamente, creemos que es un diseño brillante, con el cual podrás lucirte allá donde vayas.

15. Camiseta con un cubo de Rubik

Por último, te mostramos esta camiseta tan brutal, especialmente para la gente que sea muy fan del cubo de Rubik. Pues, se muestra (de broma), varias fórmulas matemáticas que debes usar para resolver este cubo. Evidentemente, no es el método real que debes emplear para resolverlo, pero llevar esta camiseta te hará parecer un genio.

Los 13 Elementos de Euclides

Los Elementos de Euclides (Ver precio) es una de las obras más representativas de toda la matemática. De hecho, lo más interesante es que a pesar de su antigüedad, sigue muy presente en la actualidad. No es para menos, pues gran parte de la información que contiene este libro ha permitido constituir los parámetros de la educación en el ámbito de la geometría.

Este texto se conoce popularmente como la geometría euclidiana. Básicamente, consiste en una obra matemática de trece libros. Su antigüedad data del año 300 a.C. Por medio de esta narrativa, Euclides muestra una perspectiva concisa de mirar la geometría: el plano y el espacio. A continuación, se describe brevemente lo más relevante del libro.

Historia del libro

El primer aspecto a destacar es que se trata de uno de los libros más difundidos de toda la historia. Sin embargo, pese a su popularidad en Bizancio, no fue sino hasta 1482 cuando se imprimió la primera versión del texto.

El compilado contiene un total de 13 libros en los que el autor destaca su conocimiento sobre la geometría y matemática. Todo esto se explica de un modo bastante simple. Con el surgimiento de la obra, tenemos los conocidos Postulados de Euclides.

Libro I

El autor, en este primer libro, expone un total de 48 proposiciones. Todas estas parten de 23 conceptualizaciones que se mantienen en la actualidad como superficie, punto y línea. Además, incluye 5 axiomas y 5 postulados. Entre las proposiciones se tiene en cuenta la primera ejecución del teorema de Pitágoras.

26 de las proposiciones del libro I tienen que ver con las cualidades del triángulo. Desde la proposición 27 hasta la 32 se habla de las teorías paralelas. Hay definiciones importantes que se mantienen en la actualidad, como la línea, el punto, el ángulo, entre otros:

Punto, o signo, es lo que no tiene partes, o lo que no tiene magnitud”.

“Línea es una longitud sin latitud”.

“Superficie plana es aquella, en la que, tomados dos puntos cualesquiera, la recta terminada por ellos se halla toda en la misma superficie”.

Además, se refiere a otros aspectos claves de la geometría actual, como los ángulos del triángulo. Por esto, expresa que, si dos triángulos cuentan con dos lados del uno proporcionalmente idénticos a los dos lados del otro, y los ángulos que tienen estas partes equivalen entre sí, las bases serán las mismas.

En palabras más simples, quiere decir que el triángulo A es igual al triángulo B. Asimismo, el resto de ángulos contrarios a lados idénticos son también equivalentes.

Libro II

En el segundo libro, Euclides enfatiza en la Escuela de Pitágoras. Esto con la finalidad de adentrarse en aspectos como el álgebra de la geometría. Se determinan las semejanzas geométricas en distintas formas algebraicas. Por otro lado, se generaliza el Teorema de Pitágoras. Particularmente, del aspecto conocido como la ley del coseno

Este segundo libro de Elemento de Euclides se inclina hacia la utilización del método de implementación de las áreas. La división de la recta es un aspecto relevante de este libro II en particular. Euclides inicia este libro exponiendo que:

“Todo paralelogramo rectángulo se dice estar contenido por las dos rectas, que comprende el ángulo recto”.  

Asimismo, continúa explicando que, si dos rectas son divididas en cualquier cantidad de partes idénticas, el rectángulo que se crea a partir de ambas es igual a los rectángulos que contiene la entera, y por las partes de la otra.

Entonces, si una recta es dividida en cualquier parte, los rectángulos que forman parte de toda esta, y sus segmentos, son idénticos al cuadrado de la recta.

Libro III

El siguiente libro de los Elementos de Euclides, se relaciona con las teorías asociadas a la circunferencia. Asimismo, destaca otras investigaciones como el estudio de las tangentes y la definición angular. Tiene un total de 37 proposiciones. De todas estas, 32 son teoremas y las cinco restantes son problemas. Además, incluye 11 definiciones.

Si bien es cierto que no se considera un volumen excelente, dada la complejidad sistemática, incluye aspectos importantes como la definición de tangente y la búsqueda del centro del círculo.

Libro IV

Este libro mantiene la intención de rescatar las teorías pitagóricas. Para ello, Euclides se basa en la utilización de compás y regla en la ejecución poligonal de 3 hasta 15 lados. Todas las proposiciones de este libro son problemas, para un total de 16. Asimismo, incluye 7 definiciones. Entre ellas destacan:

Se define como recta aplicada a un círculo cuando los extremos de la misma se ubican en la circunferencia de este”.

Por otro lado, se analiza también la elaboración de polígonos como el hexágono. Para esto, el autor recurre a la duplicación de lados. La proposición 11 de este libro se basa en la construcción de un pentágono equilátero dentro de una circunferencia.

Libro V

Se puede asumir que este libro es el mejor de toda la obra. La presentación de la teoría de la proporción aplicable es inigualable. De hecho, en este libro se logra dar resolución al problema establecido por Pitágoras en relación con los números irracionales.  

Euclides habla de la proporcionalidad con respecto a las cantidades iguales de razón. En tal sentido expresa que:

“Se considera que una magnitud inicial tiene la misma razón con otra, que una tercera con una cuarta, cuando cualquier equimúltiplo de la primera magnitud y la tercera son superiores a la par. Esto aplica tanto en el caso de que sean iguales a la paridad o inferiores con respecto a cualquier equimúltiplo de la segunda magnitud y de la cuarta, consecuentemente. Y, por supuesto, siguiendo este mismo orden.”

Libro VI

Este libro propone la teoría eudoxiana en relación con el estudio de la geometría plana.  Se definen teoremas esenciales de los triángulos similares. Además, se expone la creación de la 3º, 4º y la media proporcional. Otro aspecto interesante de este libro es la solución a ecuaciones cuádricas. Se definen las figuras rectilíneas de la siguiente forma:

“Figuras rectilíneas iguales son aquellas que cuentan con ángulos idénticos respectivamente. De igual modo y, en forma proporcional, los lados que poseen los ángulos equivalentes.”

Este libro tiene un total de 33 proposiciones. Entre ellas, la más importante se basa en que la bisectriz interior de un ángulo de un triángulo separa el lado contrario en dos secciones equivalentes a las otras dos partes.

Libro VII

A partir de este libro, hay un cambio estructural en lo que Euclides quiere expresar. Esto aplica también para los libros siguientes, específicamente para el libro VIII y IX. Las preposiciones de este libro son en total 102. Sin embargo, a diferencia de lo anterior, se inclinan más hacia investigaciones teóricas.

Por ejemplo, se encuentra la necesidad de establecer la medida máxima coincidente entre sí de dos números no primos. Incluso, se puede definir a este libro como una recopilación de lo que Pitágoras dejó en el ámbito aritmético. Las definiciones son bastante interesantes.  Por ejemplo:

La unidad es lo que da unanimidad e individualiza cada elemento”.

“Un número es una diversidad conformada de unidades”.

Este libro se enfoca mucho más hacia la perspectiva numérica y su aplicación en distintos ámbitos.

Libro VIII

Quizás uno de los puntos que no queda claro de este libro es la definición de noción. No hay una conceptualización clara de la cual hacer referencia. Sin embargo, en otros aspectos, se habla sobre la serie numérica en proporción continúa. No hay definiciones. Solo hay 27 proposiciones.

Libro IX

Partiendo de la clara tendencia pitagórica, este libro habla de la teoría en relación con la paridad y disparidad numérica y su vinculación. Asimismo, se determina la cantidad infinita de números primos. Al igual que el libro anterior, no hay definiciones, pues todas se agrupan en el Libro VII.

Libro X

Este libro es uno de los más complejos de toda la obra. La razón tiene que ver con la implicación de números irracionales en la segmentación rectilínea. Nuevamente, incluye definiciones para un total de 16 que se dividen en tres secciones. Además, tiene 115 proposiciones. El autor define términos como magnitud inconmensurable de la siguiente forma:

“Son magnitudes conmensurables, todas las que pueden medirse con la misma medida e inconmensurables las que no poseen un vínculo de medida común”.

Más adelante nos encontramos con la definición de rectas conmensurables e inconmensurables:

“Se definen como líneas rectas conmensurables dentro de un cuadrado a aquellas cuyos cuadrados son medibles con la misma área y viceversa.”

Libro XI

Los libros XI, XII y XIII tienen un tema frecuente. Los tres tomos se enfocan en la geometría espacial. No hay postulados, pero hay un total de 28 definiciones.

Además, hay 75 proposiciones en total, de las cuales 63 son teoremas y el resto son proposiciones combinadas. Un dato importante es el estudio de los cinco poliedros regulares llamados sólidos platónicos.

Conclusiones

Realmente, el libro Elementos de Euclides es una buena opción para impartir enseñanzas relacionadas con la geometría. Hay gran cantidad de herramientas útiles para el aprendizaje. Además, se explica de forma bastante clara la teoría numérica. El resumen se trata de un buen libro didáctico.

Aprende con los Kahoots de matemáticas

Kahoot es un juego de preguntas y respuestas que se puede usar para evaluar el conocimiento de los estudiantes. Esta plataforma también se puede utilizar para enseñar material nuevo. Es una plataforma muy popular entre los profesores, porque permite crear cuestionarios fácilmente y además, de manera gratuita.

¿Qué es el Kahoot?

El Kahoot es una aplicación móvil y de escritorio que permite a los usuarios crear, compartir y jugar juegos de trivial en línea. Los Kahoots se pueden emplear como herramientas de enseñanza, mientras los estudiantes disfrutan de un juego de competición. Por eso, son una herramienta tan interesante para el aula.

¿Cómo se usa Kahoot? Para utilizar Kahoot, primero tienes que registrarte en la plataforma y crear un juego. Una vez generado el juego, puedes compartirlo con tus estudiantes a través de un enlace o de un código. Luego, los alumnos acceden al juego a través de ese enlace o código y comienzan a responder las preguntas.

Mejores Kahoots de matemáticas

Si en vez de crear tu propio Kahoot quieres usar uno que ya existe (hecho por otro usuario), entonces te recomendamos que mires en la siguiente colección por si te interesa alguno. Si ese no es el caso, puedes ir al siguiente apartado, en el cual te explicaremos cómo encontrar el Kahoot que mejor se adapte a tus necesidades.

Nuestra recomendación es esta colección de Kahoots, la cual contiene preguntas sobre todas las ramas de las matemáticas. Sinceramente, es muy completo y está subdividido en los temas principales de la educación matemática, por lo tanto, es fácil encontrar un Kahoot relacionado con un tema concreto.

¿Cómo buscar otros Kahoots de matemáticas?

Por otro lado, si no te ha gustado esta colección, existen dos sitios web donde puedes encontrar Kahoots de matemáticas u otros tipos de pruebas. Cuando accedes a estos sitios, puedes hacer búsquedas con filtros, lo cual te facilita muchísimo el trabajo de buscar. En la siguiente lista, puedes encontrar estas dos webs:

  • Kahoot!: El primero es evidentemente la web original, en la cual puedes buscar por tema o nivel de educación. También puedes ver los Kahoots más populares y recientemente agregados.
  • Quizlet: Quizlet es un sitio web y aplicación muy popular para estudiar. Puedes buscar en Quizlet utilizando el motor de búsqueda integrado o explorar las listas de «quiz» o prueba creadas por otros usuarios. Si encuentras un «quiz» que te gusta, puedes agregarlo a tu conjunto de estudio para practicar con él más tarde.

Conclusión

En general, creemos que los Kahoots son una herramienta divertida y útil para evaluar el progreso de los estudiantes en matemáticas. Sin embargo, no son perfectos. A veces se pueden encontrar errores en las preguntas o en las respuestas. Y también puede ser confuso saber qué nivel de dificultad es el adecuado para tu clase.

Pero, en general, opinamos que vale la pena usarlos si estás buscando una manera amena y efectiva de evaluar a tus estudiantes. Si quieres ver más métodos para aprender matemáticas, te recomendamos que le eches un vistazo a este enlace. En el cual te explicamos todas las maneras.

Las mejores 10 carreras sin matemáticas

Carreras sin matemáticas

Cuando estudiamos una carrera profesional, las habilidades numéricas, tienden a ser de las más desafiantes. Es por eso, que cuando no manejamos con suficiente fluidez el lenguaje matemático, debemos evaluar cuáles son esas alternativas, que pueden ayudarnos a conseguir un desarrollo profesional, que se ajuste a nuestras cualidades y aficiones.

Las áreas creativas, de la salud, literatura, o idiomas, tienden a brindar una serie de beneficios potenciales para los profesionales en dichas áreas. Por lo que desarrollar una carrera profesional sin matemática, no solo es una posibilidad real, sino una oportunidad potencial de obtener un título con buena demanda laboral.

Existen algunas carreras universitarias, en las que podemos pensar, las cuales no involucran la matemática como materia base de estudio. Estas carreras pueden formar parte de nuestras opciones a la hora de elegir una carrera profesional, y las cuales debes enfocar en tus habilidades.

Pero ¿Qué son las habilidades? Nuestras habilidades son esas cosas somos capaces de hacer, o para las cuales tenemos mayor comprensión. Cuando entendemos cuáles son nuestras habilidades y en qué áreas podríamos desempeñarnos con éxito, entonces podemos comenzar a evaluar qué carrera universitaria se adapta mejor a nuestros intereses.

Si estás en la búsqueda de una carrera universitaria, en la cual no sea necesario el desarrollo de habilidades matemáticas, estás en el lugar indicado. Hemos preparado una selección con las 10 mejores carreras sin matemáticas que puedes considerar. A continuación, te las describimos para que las compares y veas qué opciones te gustan más.

Odontología

La odontología es una especialidad dentro del ámbito de la medicina, la cual se encarga del estudio de la salud bucal, y el tratamiento de los principales problemas bucales.

Existen diferentes especialidades dentro de la carrera de odontología, sin embargo, ninguna de estas está estrechamente relacionada con la matemática, por lo que solo es necesaria, para el manejo de algunos cálculos básicos.

El profesional en odontología, puede desempeñarse en el área de la salud bucal de forma independiente, o para entes públicos, y sus áreas de acción dependen estrechamente del tipo de especialidad en el cual este se desarrolle.

Antropología

La carrera de antropología, basa su estudio en el lenguaje y las ciencias sociales, la cual se emplea de diferentes formas. Esta carrera contempla el estudio de las civilizaciones humanas desde las culturas antiguas hasta la sociedad actual. Por lo que, se basa en el análisis y exploración de yacimientos arqueológicos y evidencias de las diferentes civilizaciones

La antropología es un área fascinante, sus profesionales pueden desarrollarse dentro de diferentes ámbitos, bien sea el educativo, museos, en algunos ámbitos religiosos. También, tienen perfil profesional para ejercer en el área de psicología organizacional y liderazgo, o en desarrollo internacional.

Pueden desempeñarse como especialistas en economía, políticas públicas, o en otros entornos como la publicidad, la filosofía, teatro o escritura.

Licenciatura en Historia

Otra carrera en la que no vas a necesitar desarrollar habilidades numéricas es la licenciatura en historia. Esta carrera permite abordar la historia, sociedades y gobiernos, dentro de diferentes periodos de la humanidad, la manera de poder identificar, analizar y estudiar los hechos más relevantes y sucesos dentro de ella.

El estudio de la historia, es muy extenso, y puede enfocarse en diferentes ramas como: la educación, cartografía, religión, lengua, economía, arte, ambiente. Entre otras áreas en las que se puede especializar cualquier historiador. Y también, puedes especializarte en diferentes períodos históricos.

Los estudiantes de historia, intervienen en procesos de investigación, escritura y enseñanza. Tienen oportunidades de desarrollarse profesionalmente en entes gubernamentales, política, periodismo, políticas públicas, museos, u organizaciones culturales. Como ves es una carrera que da mucho de sí misma.

Licenciatura en Psicología

La psicología es otra de las ramas de la salud, los profesionales de esta carrera se enfocan en el estudio de la conducta humana, complementando elementos de la medicina y ciencia. Por lo que, su contenido no está directamente vinculado a materias como la matemática.

Los profesionales en psicología, se preparan para desarrollar diagnósticos y métodos de tratamiento, los cuales se fundamentan en la observación de síntomas o conductas. Un licenciado en psicología, puede ingresar al campo laboral, en áreas de consejería, salud conductual u ocupacional, investigación, psiquiatría, entre otros.

Licenciatura en Sociología

La sociología es una carrera muy vinculada a la psicología, en ella los estudiantes de sociología desarrollan conocimientos acerca de las tendencias generales en el comportamiento humano, la interacción y hábitos sociales. Su enfoque es hacia las humanidades, por lo cual, no requiere la matemática como materia base.

El profesional en sociología se encarga de analizar y recopilar información sobre comportamientos sociales, habilidades transferibles, y la capacidad de pronosticar tendencias de comportamiento.

El campo laboral para los profesionales en sociología, permite desempeñarse en trabajo social, justicia penal, investigación de políticas públicas, relaciones públicas o investigación política, o desarrollo de investigaciones de mercado.

Administración de Recursos humanos

La administración de recursos humanos tiene el proporciono de capacitar y formar talento para el desarrollo de la fuerza laboral. Esta carrera se enfoca primordialmente en el talento humano, por lo que no está relacionada con la materia de matemática.

La administración de recursos humanos brinda herramientas de información y capacitación muy específicas de la industria. Los profesionales de esta área obtienen un título que puede apoyar su desarrollo profesional en áreas de trabajos administrativos, y de selección de personal, de nivel de entrada en el sector de servicios gubernamentales y sin fines de lucro.

Licenciatura en Filosofía

El profesional en filosofía, recibe una formación que apoya el desarrollo de habilidades de pensamiento crítico y análisis lógico, a través de modelos que exponen dentro de diferentes sistemas de pensamiento, por lo que tampoco tiene un enfoque en la matemática como materia base.

La filosofía busca un análisis profundo de la vida, lo que permite a los profesionales de esta área incursionar en múltiples áreas. Está estrechamente relacionada con habilidades de lectura y escritura.

Los profesionales en filosofía regularmente se desenvuelven profesionalmente en áreas como filosofía antigua, la moralidad, la metafísica, la filosofía de la ciencia, la política, la lógica y la justicia social, además pueden optar por otras áreas como el derecho, educación, investigación, teología, escritura, entre otras.

Diseño Gráfico

El diseño gráfico es una carrera orientada hacia el área del arte y la creatividad, por lo que no requiere habilidades matemáticas o numéricas como parte del proceso de aprendizaje.

Esta carrera se encarga en brindar las herramientas de capacitación específica en el desarrollo de aptitudes artísticas, manejo de herramientas de diseño, manejo de herramientas digitales. El diseño gráfico es una carrera que permite combinar herramientas creativas con elementos de educación o certificación de software industrial.

Los diseñadores gráficos incursionan en el campo laboral en áreas como la publicidad, comunicaciones comerciales, publicación multimedia, autoedición o diseño web, lo cual permite un enorme potencial en la actualidad, dado el impulso de la industria tecnológica.

Música

También orientada hacia el arte, encontramos la carrera para profesionales de la música, una carrera que se encarga de explorar habilidades para el desarrollo musical, instrumentos, educación de la voz, historia y teoría de la música.

No requiere ni aborda la matemática dentro de su estudio, ya que su enfoque es completamente orientado a las habilidades artísticas, por lo que es una carrera que se recomienda para aquellas personas que tienen algún tipo de talento o vocación musical.

Los profesionales de esta carrera se desempeñan generalmente en la industria musical, como productor musical, compositor, director de orquesta o profesor de música.

Licenciatura en Artes Culinarias

Los profesionales en artes culinarias se preparan a través de un programa que les permite diseñar un menú culinario de forma profesional de principio a fin. La única forma en la que esta carrera, podría involucrar elementos matemáticos, es para el cálculo de ingredientes, por lo que no es una materia base que se maneje dentro de esta carrera.

El proceso de formación en ciencias culinarias, pretende introducir a los estudiantes en técnicas para emplear ingredientes en la preparación de platillos, los tipos de ingredientes, y como se integran a cada platillo, las sanitarias. Gestión de cocinas y la cadena de suministro de alimentos.

Los licenciados en artes culinarias pueden convertirse en gerentes de restaurantes, críticos gastronómicos, estilistas gastronómicos o empresarios dentro de la industria culinaria.

Conclusiones

Las matemáticas son un área en la que no todos deseamos desenvolvernos, en algunos casos se torna compleja y demasiado demandante, por lo que puede incluso percibirse abrumadora.

La buena noticia es que en la actualidad podemos desarrollar una carrera profesional, en un área donde nos sintamos capacitados, lo cual es una de las herramientas fundamentales para conseguir el éxito, sin que esto nos exija invertir tiempo en fórmulas matemáticas.

Cada una de las carreras universitarias que abordamos en este post, ofrecen una serie de desafíos intelectuales únicos, los cuales pueden ayudarte a desarrollar aquellos conjuntos de habilidades que pueden ser aplicables en diferentes puestos de trabajo.

Estas son apenas algunas de las carreras universitarias, en las que podemos encontrar oportunidades potenciales, sin embargo, si te animan otras áreas, tecnológicas, creativas, legales, en el sector salud, podemos incluso ir ampliando nuestra selección con interesantes oportunidades de desarrollo profesional.

Álgebra de Baldor, un clásico incuestionable en las escuelas de habla hispana

El libro Álgebra de Baldor

El libro Álgebra de Baldor (Ver en Amazon) es considerado como uno de los libros más consultados en los colegios de habla hispana, incluso superando en algunos casos la obra de Don Quijote de la Mancha. Este hecho le ha permitido convertirse en parte de la vida de millones de estudiantes en sus primeros pasos en el álgebra.

En el presente, su portada clásica es bien reconocida, al igual que su legado. Pero, es necesario ahondar más en qué lo hace tan especial. Es de esto sobre lo que hablaremos en esta reseña, en la cual encontrarás toda la información del libro respecto a su contenido, autor, ficha técnica, aplicación para la enseñanza y una opinión personal.

Introducción

El libro de Álgebra de Baldor es una obra de propósitos educativos publicada por primera vez el 19 de junio de 1941. Su autor, el matemático y profesor Aurelio Baldor, recopiló en este, 130 temas enfocados en una rama fundamental de las matemáticas, como lo es el álgebra. Los cuales se tratan de una manera muy práctica, a través de ejercicios y problemas didácticos.

Entre sumas, restas y hasta logaritmos compuestos, van pasando sus páginas. Además, de tener 305 ejercicios. En su totalidad contiene 5790 problemas por resolver (19 por cada ejercicio en promedio) y más de 100 explicaciones. Este es el elemento que hace destacar tanto a esta obra, respecto a otros libros que tratan el mismo ámbito matemático.

Además, define cada concepto matemático importante, puesto que va desde lo más básico hasta los temas más avanzados, esta es una de las claves de su gran éxito. Aunque también este recae en la forma en la que los temas son expuestos y la construcción secuencial que demuestra. Sin lugar a dudas, es una maravilla de libro didáctico.

Descripción técnica

  • Autor: Aurelio Baldor
  • Fecha de publicación: 1941, 1983, 1997, 2005, 2007 y 2017
  • Número de páginas: 576 páginas
  • Número de capítulos: 39 capítulos

Escrito durante la revolución cubana, el Álgebra de Baldor tuvo un trayecto interesante con respecto a sus publicaciones. La primera de ellas se dio por la Editorial Cultural en La Habana, Cuba. Sin embargo, para el 1948, el autor vendió sus derechos editoriales a la editorial mexicana Publicaciones Cultural, el dinero fue invertido más tarde en un instituto educativo.

Una vez Baldor llegó a México exiliado, el libro fue nuevamente editado por la Editorial Cultural Mexicana. Y no sería la única, más ediciones fueron lanzadas en Colombia, Venezuela y España. Aún en la actualidad, el libro sigue siendo comercializado por parte del Grupo Editorial Patria.

Contenido del libro

En su totalidad, el libro de Álgebra de Baldor se encuentra dividido en 39 capítulos y un apéndice. Todos los capítulos están centrados en explicaciones básicas matemáticas. Algo que facilita la compresión del álgebra enseñada dentro de sus páginas, es que su nivel de dificultad es gradual.

Es decir, se comienza desde los temas más simples, hasta los más complejos. De modo que se sugiere seguir con la secuencia indicada en su contenido. Este es uno de los secretos de la atemporalidad que ha tenido el libro, asimismo, es una de las razones por las que es tan demandado en las escuelas.

Siguiendo el orden de presentación, los primeros capítulos tratan las siguientes temáticas: Sumas, Restas, Signos de agrupación, Multiplicaciones, Divisiones, Monomios, Polinomios, Máximo común divisor, Mínimo común múltiplo, Descomposición factorial, Fracciones, Ecuaciones de primer grado y Sistemas de ecuaciones.

Otros capítulos que se incluyen en el libro a continuación son algunos como: Operaciones con fracciones algebraicas, Representación gráfica de funciones y Números complejos. Mientras que los capítulos finales corresponden a los de: Ecuaciones binomiales y trinomiales, Transformaciones de radicales dobles e Interés compuesto.

Con respecto a su apéndice, en este se encuentran tablas para el cálculo del interés compuesto, por igual, para el interés compuesto decreciente. Un cuadro de formas básicas para la descomposición factorial, más una tabla de potencias y raíces, complementan el contenido. Sus últimas páginas están dedicadas a responder los ejercicios.

Ilustraciones

A pesar de que el contenido del Álgebra de Baldor lo ha llevado a convertirse en uno de los clásicos de la educación media y superior, su portada también ayudó en este logro. En la memoria de millones de mexicanos y otros hispanohablantes, está muy presente la ilustración de su portada. De hecho, es muy posible que la hayas reconocido, nada más verla.

En ella se muestra al matemático, astrónomo y geógrafo persa-musulmán del siglo VIII, Al-Juarismi. Él se sobrepone sobre su natal Bagdad. La misma fue una creación del ilustrador cubano D.G. Terminel, que se encargó de todas las ilustraciones del libro. Precisamente, son estos dibujos dentro de sus páginas, los que permiten apreciar el esfuerzo en la edición de la obra.

Dentro del libro se podrá encontrar que cada capítulo comienza con un encabezado ilustrado. Todos ellos hacen referencias a figuras importantes para las matemáticas a través de la historia. Por ejemplo, en sus preliminares encontrarás un dibujo alusivo a las civilizaciones precolombinas, algo que conecta al origen del concepto del número.

En el primer capítulo verás en su encabezado una ilustración que hace tributo a las matemáticas en el antiguo Egipto. En el tercer capítulo está una ilustración de Tales de Mileto. Siguen más ilustraciones centradas en Pitágoras, Platón, Euclides, entre otros representantes. Y se continúa con ilustraciones del álgebra de la India y las universidades hispano-árabes.

Así como siguen más referencias a matemáticos destacados hasta el siglo XX. Por ejemplo, Leonardo de Pisa, René Descartes, Brook Taylor, Max Planck y como último Juan Andrés. Es evidente, que esta obra hace referencia a muchos matemáticos importantes y a sus descubrimientos, los cuales son explicados y demostrados a lo largo del libro.

Sobre su autor

Un malentendido muy curioso con este libro, es creer que el hombre en la portada es el propio Baldor. Pero, como se ha explicado antes, es el matemático Al-Juarismi. Él es considerado como uno los grandes matemáticos de la historia y debido a que el libro cuenta la historia de las matemáticas por medio de sus ilustraciones, tenerlo de portada fue una selección adrede.

Al final, Álgebra de Baldor comparte el destino de la mayoría de los libros educativos, no mostrar el rostro de su autor. Aun así, su obra y vida fueron destacables. Aurelio Ángel Baldor de la Vega nació en el año 1906 y no solo fue matemático o profesor, sino que fue un famoso abogado y escritor, como es evidente.

En 1959, con la Revolución Cubana se convirtió en un perseguido político, por lo que en 1960 partió a México y después a Estados Unidos. Trabajó como profesor en Saint Peter’s University y ocupó el puesto como jefe de Matemática en la Stevens Academy de Hoboken. Ambas ocupaciones en Nueva Jersey.

Su vida estuvo dedicada al estudio de teoremas, y la gestación de ejercicios precálculo. Cabe destacar que el libro Álgebra de Baldor no fue su único publicado, sino que también lo hizo de otros como Aritmética de Baldor, Geometría plana y del espacio y Trigonometría de Baldor.

Falleció en 1978, en Miami, ciudad en la que se retiró junto con su familia y pasó sus últimos años de vida. Quienes fueron sus estudiantes lo llegaron a describir como un profesor muy amable con sus pupilos.

Conclusión

Álgebra de Baldor no es por nada una de las mejores recomendaciones para aprender álgebra en español. La vigencia que sigue teniendo, y que se haya convertido en un libro con la capacidad de educar distintas generaciones en matemáticas, habla por sí solo todo lo necesario.

Su estructuración, la forma en la que sus explicaciones han sido simplificadas y la variedad de ejercicios que presenta, son de sus principales ventajas. Cumpliendo a la perfección así, su más grande objetivo, el llevar el álgebra a un nivel común, y con ello, alcanzar al mayor número de lectores.

Puede que, si estés en la búsqueda de un libro más avanzado, esta no sea tu primera opción. No obstante, su accesibilidad, redacción e ilustraciones, lo han transformado en un clásico para todos aquellos que aman o desean amar el álgebra.

Los 10 mejores cursos de estadística en línea

Mejores cursos de estadística

La estadística es una disciplina que se puede aplicar a muchas áreas diferentes, desde la ciencia hasta la administración de empresas. Por eso, tener ciertos conocimientos relacionados con esta materia te puede abrir muchísimas puertas. Si estás buscando un buen curso de estadística en línea para mejorar tus habilidades, ¡aquí te dejamos algunos de los mejores!

¿Qué es la estadística?

La estadística es la ciencia que se ocupa del análisis, interpretación, recolección y presentación de datos. También, se puede definir como el conjunto de técnicas y métodos que permiten sacar conclusiones a partir de un conjunto de datos. En general, se utiliza para analizar datos y extraer información útil de ellos, así como para tomar decisiones en diversos ámbitos.

Por ejemplo, en el ámbito empresarial se utiliza para tomar decisiones sobre inversiones, marketing o producción; en el ámbito académico sirve para realizar investigaciones; en el área médica se usa para diagnosticar enfermedades o evaluar tratamientos; y en el ámbito político se utiliza para tomar decisiones acerca de la asignación de recursos, por ejemplo.

¿Qué tipos de estadísticas existen?

La estadística se divide en dos grandes áreas: la estadística descriptiva y la estadística inferencial. La primera se encarga de describir el conjunto de datos mediante técnicas como los gráficos o las tablas; mientras que la segunda trata de extraer conclusiones del conjunto de datos, mediante técnicas como el muestreo o el análisis de regresión.

¿Cuáles son los mejores cursos de estadística en línea?

En la actualidad, hay una gran cantidad de cursos de estadística en línea. Esto puede ser abrumador para alguien que está buscando un curso muy concreto que sea adecuado para sus necesidades. Por eso, hemos decidido recopilar los 10 mejores cursos de estadística divididos en tres niveles de dificultad, según la complejidad de las explicaciones.

Para hacer esta selección nos hemos basado en dos criterios principales: la calidad del contenido y el precio. Es por eso, que te mostraremos los cursos de estadística más profesionales de Internet, pero a su vez, podrás ver que los precios son muy asequibles. Esto se debe a que hemos buscado el contenido en las mejores plataformas de cursos online de toda la red.

1. Curso de Estadística y Probabilidad (Nivel básico)

Valoración
4,6 sobre 5 (con más de 74700 alumnos)
Duración
28 horas en total
Certificado
Material de apoyo
Incluido

Este primer curso (Ver precio) ofrece una formación de 28 horas, impartida por un profesor muy respetado y certificada por la Universidad Nacional Autónoma de México. Es ideal para estudiantes de carreras científicas e ingenierías. Y si estás dispuesto a aprender, te convertirás en un experto en la obtención, descripción e interpretación de datos estadísticos.

El temario del curso incluye: un bloque de conceptos previos, una completa descripción del proceso estadístico junto a todo un tema del tratamiento de datos, una explicación de los datos bivariados y, por último, una unidad relacionada con el azar. Esta descripción del curso es muy general, por lo tanto, si quieres más información, no dudes en acceder a la página del curso.

Además, la metodología de aprendizaje está muy bien planteada. Ya que, la teoría se aprende a través de los vídeos y las lecturas, y simultáneamente se hacen algunas prácticas con herramientas informáticas. De hecho, todos los estudiantes de este curso opinan que la estructura de la formación ha sido clave durante su estudio.

2. Fundamentos de la Estadística Aplicada (Nivel básico)

Valoración
4,4 sobre 5 (con más de 8900 alumnos)
Duración
29 horas en total
Certificado
Material de apoyo
Incluido

Este segundo curso (Ver precio) te permite aprender los conceptos básicos de la estadística aplicada. Principalmente, esta formación está orientada a estudiantes y profesionales de las siguientes disciplinas: ingenierías, ciencias y finanzas. Aunque, la estadística puede estudiarse desde cualquier ámbito, así que todo el mundo es un buen candidato para hacer este curso.

El temario explica todas las aplicaciones que tiene la estadística, seguidamente puedes ver lo que ofrece: análisis e interpretación de conjuntos de datos, identificar y formular hipótesis, calcular intervalos de confianza, construir modelos estadísticos y aprender a verificar los resultados. Básicamente, se centra en la aplicación del análisis estadístico.

Este curso te abre las puertas a estudios centrados en los modelos estadísticos, los métodos de «Machine Learning» y en general, disciplinas relacionadas con las aplicaciones directas de la estadística. Y si te interesa especializarte en la estadística financiera, te recomendamos que una vez hayas acabado este curso, te mires el curso 7 de este artículo.

3. Curso de estadística inferencial para psicología y ciencias sociales (Nivel básico)

Valoración
4,5 sobre 5 (con más de 60 alumnos)
Duración
7 horas en total
Certificado
Material de apoyo
21 documentos descargables

Este tercer curso (Ver precio) se especializa en el ámbito de la estadística inferencial relacionada con las ciencias sociales. Por lo tanto, se recomienda principalmente para estudiantes y profesionales del sector de letras. En cambio, si estás realizando estudios un poco más técnicos, te recomendamos los cursos 4 y 5.

Y si estás interesado en hacer un curso de estadística inferencial aplicable a cualquier ámbito de estudio y, como resultado, un poco más completo, te recomendamos mirarte el curso 6. Puesto que esta formación está mayormente enfocada a alumnos que no tienen una base matemática inicial suficientemente completa para entender esta materia en toda su complejidad.

Este es, sencillamente, el mejor curso introductorio a la estadística para gente que no cuenta con unos conocimientos matemáticos muy complejos. Además, antes de empezar con las explicaciones de la estadística inferencial, que es la rama más importante para las ciencias sociales, primero hace una buena introducción de la estadística descriptiva.

4. Curso de Estadística Descriptiva de 0 a 100 (Nivel básico-medio)

Valoración
con más de 1000 alumnos
Duración
8 horas en total
Certificado
Material de apoyo
12 recursos descargables

Esta cuarta formación (Ver precio) permite al estudiante adentrarse al mundo de la estadística descriptiva, que como hemos dicho, es la rama de la estadística que se encarga de describir un conjunto de datos estadísticos. Concretamente, con este curso verás las bases de la estadística y los pasos del método que se emplea para realizar análisis estadísticos.

El temario de este curso incluye: los conceptos más básicos de la estadística, los tipos de variables, una descripción exhaustiva de los datos y las fuentes de información (concepto clave), las tablas y representaciones, etc. E incluso explica cómo usar el Excel y otras herramientas fundamentales para la recolección y representación de los datos.

Y de igual manera, que las anteriores formaciones, esta tiene una estructura que favorece el aprendizaje de esta disciplina. Ya que, incluye los vídeos con la teoría y 12 documentos descargables con ejercicios. Por lo tanto, te da toda la teoría necesaria para entender la estadística y además, te enseña a aplicarla a la vida real con ejemplos muy útiles.

5. Curso completo de Estadística a nivel universitario (Nivel medio)

Valoración
4,5 sobre 5 (con más de 6700 alumnos)
Duración
14,5 horas en total
Certificado
Material de apoyo
47 documentos descargables

Con este quinto curso (Ver precio) llegamos a un nivel un poco más alto. El contenido de este curso abarca toda la estadística, esto quiere decir que es un curso tan completo que trata todos los subtemas de la estadística: estadística descriptiva, estadística inferencial, probabilidad, regresiones, distribuciones, estimaciones y contrastes de hipótesis.

Por lo tanto, hacer este curso es una muy buena opción si tienes unos conocimientos sobre la estadística mínimos, y quieres ampliarlos a un nivel académico. Y una vez lo hayas cursado, podrás acceder a otras formaciones más especializadas en un sector determinado o en una aplicación de la estadística concreta.

Este curso es algo más complejo que los anteriores, sin embargo, la autora del curso se ha encargado de crear material de ayuda para complementar sus explicaciones: ejemplos resueltos, resúmenes y formularios. Y todos los estudiantes que han completado la enseñanza opinan que la profesora es capaz de hacer explicaciones sencillas y que se entienden muy bien.

6. Curso práctico de Estadística Inferencial (Nivel medio)

Valoración
5 sobre 5 (con más de 350 alumnos)
Duración
7,5 horas en total
Certificado
Material de apoyo
41 documentos descargables y tareas

Este sexto curso (Ver precio) es una especie de continuación del último. Es recomendable, aunque no obligatorio, haber cursado el anterior curso para acceder a este. Esto se debe a que, este parte de una base de conocimientos sencilla, pero que contiene muchos conceptos explicados en el curso de estadística a nivel universitario que pueden facilitarte el aprendizaje.

Además, este es el curso «contrario» del curso 4, puesto que trata la otra parte de la estadística: la estadística inferencial. Sin embargo, esto no quiere decir que solo puedas hacer este o el 4, hay muchos estudiantes que han hecho los dos, de esta forma se han formado en la totalidad de la estadística (sus dos partes principales).

Por último, comentar que esta formación es totalmente práctica, puesto que la teoría se explica desde los ejercicios. Sin embargo, esto no debe preocuparte, ya que, se te ofrecen varios resúmenes de conceptos estadísticos y fórmulas, nada más iniciar el curso. Para que cuando tengas alguna duda, puedas consultar estos documentos y aprendas bien el concepto.

7. Curso de Estadística Aplicada a los Negocios (Nivel medio-avanzado)

Valoración
4,6 sobre 5 (con más de 49800 alumnos)
Duración
19 horas en total
Certificado
Material de apoyo
Incluido

Esta séptima formación (Ver precio) está dedicada a las finanzas y a los negocios. La imparte la profesora Magdalena Cornejo y la Universidad Austral ofrece la certificación. En cuanto al curso en sí, es un conjunto de cuatro bloques que componen 19 horas de lecciones sobre: la estadística descriptiva, las probabilidades, la inferencia estadística y el análisis de regresión.

Te proporciona todos los conceptos teóricos relacionados con los negocios y además, te ayuda a mejorar en la toma de decisiones. Por eso, es un curso tan recomendado para economistas, gestores y personal con cargos relacionados con la logística de los negocios. Y cabe destacar que los requisitos son prácticamente nulos, porque empieza desde lo más básico.

Todos los estudiantes están de acuerdo en que el gran atractivo del curso o la habilidad más importante que se aprende es la toma de decisiones de manera científica. Y si juntas esto con los conocimientos más técnicos que se aprenden, obtienes un curso de estadística que te prepara a nivel universitario con aplicación directa a los negocios.

8. Curso de Programación Estadística con R (Nivel medio-avanzado)

Valoración
4,7 sobre 5 (con más de 7600 alumnos)
Duración
47 horas en total
Certificado
Material de apoyo
Incluido

Este octavo curso (Ver precio) te enseña todo lo que debes saber para dominar la programación estadística en R, que es un lenguaje de programación orientado a la estadística. Permite hacer manipulaciones y representaciones de datos bastante complejas y también, es un una herramienta muy versátil, puedes informarte más aquí.

Gracias a estas 47 horas de vídeos, pasarás de no saber nada acerca de R, a saberlo todo. Por lo tanto, este recurso didáctico es muy útil para los estudiantes de muchas carreras científicas. A continuación, os mostramos algunos ejemplos de disciplinas que estudian R: matemáticas financieras, bioinformática, técnicas gráficas, inteligencia artificial, «Machine Learning», etc.

En este curso se explica el R a fondo, te permite construir una buena base de conocimientos sobre este lenguaje y el «Data Science». La cual puedes complementar con otros cursos como este de Machine Learning, no obstante esto es solo si quieres ampliar tu formación, para acabar de entender la aplicabilidad de R y adentrarte en el mundo del Machine Learning.

9. Curso completo de Estadística descriptiva – RStudio y Python (Nivel medio-avanzado)

Valoración
4,5 sobre 5 (con más de 13300 alumnos)
Duración
44 horas en total
Certificado
Material de apoyo
9 artículos descargables y tareas

Este octavo curso de estadística (Ver precio) trata la estadística descriptiva a través de R y Python. Esta es una formación algo más completa que la anterior, porque a diferencia de esta última, en esta no se estudia solamente R, sino que también se trata el Python. Es por eso que este se recomienda más para los estudiantes que van más en serio con el tema.

Aunque, el hecho de que sea un curso más complejo no debe confundirte, pues se empieza absolutamente desde cero. Es más, no se pide ningún requisito mínimo en cuanto a conocimientos, solamente se exige tener un ordenador con el cual se pueda trabajar el tema de la programación en R y Python (cualquier tipo de ordenador servirá).

Si aún dudas sobre si deberías hacer este curso o el anterior, te recomendamos que vayas a la página de cada uno y compares los módulos o temas (la estructura didáctica) y las opiniones de los alumnos que ya han hecho la formación. De esta manera, podrás identificar cuál de los dos se centra más en los puntos que a ti te interesan.

10. Curso de Estadística aplicada a cualquier campo profesional (Nivel avanzado)

Valoración
4 sobre 5 (con más de 35 alumnos)
Duración
7 horas en total
Certificado
Material de apoyo
Incluido

Por fin llegamos al décimo curso (Ver precio) el cual es el curso más avanzado y completo de todos los que hemos comentado en esta publicación. Básicamente, con este curso te enteras de todas las aplicaciones que tiene la estadística a cualquier ámbito profesional: negocios, finanzas, ciencias, «Big Data» y «Machine Learning» y todas las demás aplicaciones.

Lo bueno de este curso es que es muy concreto y ofrece lo que dice que ofrece: preparación para afrontar la estadística de cualquier ámbito profesional. Y es también por esto, que no requiere de una formación previa en estadística muy elaborada. Simplemente, debes conocer las definiciones principales de la estadística, porque todo lo demás se dará en el temario.

También es verdad que es el curso más caro que hemos comentado hasta ahora, pero sinceramente creemos que vale la pena. Esto se debe a que el contenido del curso, de verdad, prepara muy bien a los estudiantes para aplicar la estadística al campo de su interés. De hecho, puedes verlo en los comentarios y además, la profesora Mercedes cuenta con muy buenas puntuaciones en sus tres cursos.

¿Qué obtienes con estos cursos de estadística online?

Con la mayoría de estos cursos, no solo recibes un contenido impartido por profesionales del sector, también se te ofrecen algunos extras: una titulación, trucos que utilizan los expertos e incluso material didáctico para descargar con ejercicios y teoría. Lo cual es un plus que puede parecer poco útil, pero en realidad aporta mucho valor a tu estudio.

Por lo tanto, no recibes una enseñanza básica, que solo trata los conocimientos básicos y superficiales como son las fórmulas estadísticas y tres o cuatro consejos para dibujar gráficos. Si no que obtienes una formación completa y de calidad, que te ayudará a desarrollarte en el mundo de la estadística académica y empresarial. ¡Así que aprovecha estos cursos!

Y lo mejor de todo es que cualquiera de las diez formaciones que te hemos propuesto en este artículo, te dan acceso al contenido y futuras actualizaciones de por vida. De modo que, todo el material que compres estará disponible para ti, a lo largo de toda tu carrera profesional. ¡Mola mucho, eh!

¿Cuáles son las ventajas de tomar un curso de estadística en línea?

Los cursos de estadística online ofrecen una gran variedad de ventajas. Puedes estudiar a tu propio ritmo, en cualquier lugar y en cualquier momento. Además, los cursos de estadística online son generalmente más baratos que los cursos presenciales. Seguidamente, te presentamos todos los pros de tomar un curso de estadística en línea.

  • Puedes estudiar a tu propio ritmo: un curso en línea te permite estudiar cuando y donde quieras, lo que es ideal si tienes un horario ocupado.
  • Suelen ser más económicos: los cursos en línea generalmente son más baratos que los cursos presenciales.
  • Cuentan con material de soporte: puedes acceder a materiales de alta calidad que se adjuntan con el curso.
  • Contacto con expertos: tienes a tu disposición foros académicos y otras formas de contacto directo con profesores expertos en tu ámbito de estudio.

Si estás interesado en formarte en las matemáticas de una manera más general y no tan centrada en la estadística, podemos recomendarte que te mires nuestro artículo sobre los cursos de matemáticas en línea. Dicho esto, esperamos que te haya gustado esta publicación y esperamos que nos des tu opinión acerca de los cursos en la sección de comentarios.